References

Longevity Blueprint

Longevity Health and Wellness Protocol

Get Instant Access

Anderson, R.M., Bitterman, K.J., Wood, J.G., Medvedik, O., and Sinclair, D.A. (2003a). Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423, 181-185.

Anderson, R.M., Latorre-Esteves, M., Neves, A.R., Lavu, S., Medvedik, O., Taylor, C., Howitz, K.T., Santos, H., and Sinclair, D.A. (2003b). Yeast life-span extension by calorie restriction is independent of NAD fluctuation. Science 302, 2124-2126.

Aparicio, O.M., Billington, B.L., and Gottschling, D.E. (1991). Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66, 1279-1287.

Ashrafi, K., Sinclair, D., Gordon, J.I., and Guarente, L. (1999). Passage through stationary phase advances replicative aging in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 96, 9100-9105.

Barker, M.G., and Walmsley, R.M. (1999). Replicative ageing in the fission yeast Schizosaccharomyces pombe. Yeast 15, 1511-1518.

Beck, T., and Hall, M.N. (1999). The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402, 689-692.

Bitterman, K.J., Medvedik, O., and Sinclair, D.A. (2003). Longevity regulation in Saccharomyces cerevisiae: Linking metabolism, genome stability, and heterochromatin. Microbiol Mol Biol Rev 67, 376-399, table of contents.

Blander, G., and Guarente, L. (2004). The Sir2 family of protein deacetylases. Annu Rev Biochem 73, 417-435.

Bryk, M., Banerjee, M., Murphy, M., Knudsen, K.E., Garfinkel, D.J., and Curcio, M.J. (1997). Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev 11, 255-269.

Defossez, P.A., Prusty, R., Kaeberlein, M., Lin, S.J., Ferrigno, P., Silver, P.A., et al. (1999). Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol Cell 3, 447-455.

Fabrizio, P., Battistella, L., Vardavas, R., Gattazzo, C., Liou, L.L., Diaspro, A., et al. (2004a). Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J Cell Biol 166, 1055-1067.

Fabrizio, P., Liou, L.L., Moy, V.N., Diaspro, A., Selverstone-Valentine, J., Gralla, E.B., and Longo, V.D. (2003). SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics 163, 35-46.

Fabrizio, P., and Longo, V.D. (2003). The chronological life span of Saccharomyces cerevisiae. Aging Cell 2, 73-81.

Fabrizio, P., Pletcher, S.D., Minois, N., Vaupel, J.W., and Longo, V.D. (2004b). Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae. FEBS Lett 557, 136-142.

Fabrizio, P., Pozza, F., Pletcher, S.D., Gendron, C.M., and Longo, V.D. (2001). Regulation of longevity and stress resistance by Sch9 in yeast. Science 292, 288-290.

Gottlieb, S., and Esposito, R.E. (1989). A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 56, 771-776.

Gray, J.V., Petsko, G.A., Johnston, G.C., Ringe, D., Singer, R.A., and Werner-Washburne, M. (2004). "Sleeping beauty'': Quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 68, 187-206.

Harman, D. (1956). Aging: A theory based on free radical and radiation chemistry. J Gerontol 11, 298-300.

Harris, N., MacLean, M., Hatzianthis, K., Panaretou, B., and Piper, P.W. (2001). Increasing Saccharomyces cerevisiae stress resistance, through the overactivation of the heat shock response resulting from defects in the Hsp90 chaperone, does not extend replicative life span but can be associated with slower chronological ageing of nondividing cells. Mol Genet Genomics 265, 258-263.

Herker, E., Jungwirth, H., Lehmann, K.A., Maldener, C., Fröhlich, K.U., Wissing, S., et al. (2004). Chronological aging leads to apoptosis in yeast. J Cell Biol 164, 501-507.

Hertweck, M., Gobel, C., and Baumeister, R. (2004). C. elegans SGK-1 is the critical component in the Akt/PKB kinase complex to control stress response and life span. Dev Cell 6, 577-588.

Honda, Y., and Honda, S. (1999). The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. Faseb J 13, 1385-1393.

Houthoofd, K., Braeckman, B.P., Johnson, T.E., and Vanfleteren, J.R. (2003). Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans. Exp Gerontol 38, 947-954.

Imai, S., Armstrong, C.M., Kaeberlein, M., and Guarente, L. (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795-800.

Ivy, J.M., Klar, A.J., and Hicks, J.B. (1986). Cloning and characterization of four SIR genes of Saccharomyces cerevisiae. Mol Cell Biol 6, 688-702.

Jarolim, S., Millen, J., Heeren, G., Laun, P., Goldfarb, D.S., and Breitenbach, M. (2004). A novel assay for replicative lifespan in Saccharomyces cerevisiae. FEMS Yeast Res 5, 169-177.

Jazwinski, S.M. (2002). Growing old: Metabolic control and yeast aging. Annu Rev Microbiol 56, 769-792.

Jiang, J.C., Jaruga, E., Repnevskaya, M.V., and Jazwinski, S.M. (2000). An intervention resembling caloric restriction prolongs life span and retards aging in yeast. Faseb J 14, 2135-2137.

Kaeberlein, M., Andalis, A.A., Fink, G.R., and Guarente, L. (2002a). High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction. Mol Cell Biol 22, 8056-8066.

Kaeberlein, M., Andalis, A.A., Liszt, G., Fink, G.R., and Guarente, L. (2004a). Saccharomyces cerevisiae SSD1-V confers longevity by a Sir2p-independent mechanism. Genetics 166, 1661-1672.

Kaeberlein, M., Jegalian, B., and McVey, M. (2002b). AGEID: A database of aging genes and interventions. Mech Ageing Dev 123, 1115-1119.

Kaeberlein, M., and Kennedy, B.K. (2005). Large-scale identification in yeast of conserved ageing genes. Mech Ageing Dev 126, 17-21.

Kaeberlein, M., Kirkland, K.T., Fields, S., and Kennedy, B.K. (2004b). Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2, E296.

Kaeberlein, M., Kirkland, K.T., Fields, S., and Kennedy, B.K. (2005a). Genes determining replicative life span in a long-lived genetic background. Mech Ageing Dev 126, 491-504.

Kaeberlein, M., McVey, M., and Guarente, L. (1999). The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13, 2570-2580.

Kaeberlein, M., McVey, M., and Guarente, L. (2001). Using yeast to discover the fountain of youth. Sci. Aging Knowledge Environ. Oct 3; 2001 (1): pe1.

Kaeberlein, M., Powers, R.W., Steffen, K.K., Westman, E.A., Hu, D., Dang, N., et al. (2005b). Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science in press.

Kapahi, P., Zid, B.M., Harper, T., Koslover, D., Sapin, V., and Benzer, S. (2004). Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14, 885-890.

Kennedy, B.K., Austriaco, N.R., Jr., and Guarente, L. (1994). Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span. J Cell Biol 127, 1985-1993.

Kobayashi, T., and Horiuchi, T. (1996). A yeast gene product, Fobl protein, required for both replication fork blocking and recombinational hotspot activities. Genes Cells 1, 465-474.

Lakowski, B., and Hekimi, S. (1998). The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci USA 95, 13091-13096.

Landry, J., Sutton, A., Tafrov, S.T., Heller, R.C., Stebbins, J., Pillus, L., and Sternglanz, R. (2000). The silencing protein SIR2 and its homologs are NAD-dependent protein deacety-lases. Proc Natl Acad Sci USA 97, 5807-5811.

Lin, S.J., Defossez, P.A., and Guarente, L. (2000). Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126-2128.

Lin, S.J., Ford, E., Haigis, M., Liszt, G., and Guarente, L. (2004). Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev 18, 12-16.

Lin, S.J., Kaeberlein, M., Andalis, A.A., Sturtz, L.A., Defossez, P., Culotta, V.C., et al. (2002). Calorie restriction extends Saccharomyces cerevisiae life span by increasing respiration. Nature 418, 344-348.

Longo, V.D., Gralla, E.B., and Valentine, J.S. (1996). Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. J Biol Chem 271, 12275-12280.

Luo, J., Nikolaev, A.Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L., and Gu, W. (2001). Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107, 137-148.

MacLean, M., Harris, N., and Piper, P.W. (2001). Chronological lifespan of stationary phase yeast cells: A model for investigating the factors that might influence the ageing of postmitotic tissues in higher organisms. Yeast 18, 499-509.

Madeo, F., Herker, E., Wissing, S., Jungwirth, H., Eisenberg, T., and Frohlich, K.U. (2004). Apoptosis in yeast. Curr Opin Microbiol 7, 655-660.

Maskell, D.L., Kennedy, A.I., Hodgson, J.A., and Smart, K.A. (2003). Chronological and replicative lifespan of polyploid Saccharomyces cerevisiae (syn. S. pastorianus). FEMS Yeast Res. 3, 201-209.

Morley, J.F., and Morimoto, R.I. (2004). Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol Biol Cell 15, 657-664.

Mortimer, R.K., and Johnston, J.R. (1959). Life span of individual yeast cells. Nature 183, 1751-1752.

Motta, M.C., Divecha, N., Lemieux, M., Kamel, C., Chen, D., Gu, W., et al. (2004). Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551-563.

Nemoto, S., Fergusson, M.M., and Finkel, T. (2005). SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1alpha. J Biol Chem.

Park, P.U., Defossez, P.A., and Guarente, L. (1999). Effects of mutations in DNA repair genes on formation of ribosomal DNA circles and life span in Saccharomyces cerevisiae. Mol Cell Biol 19, 3848-3856.

Park, P.U., McVey, M., and Guarente, L. (2002). Separation of mother and daughter cells. Methods Enzymol 351, 468-477.

Powell, C D., Quain, D.E., and Smart, K.A. (2000). The impact of media composition and petite mutation on the longevity of a polyploid brewing yeast strain. Lett Appl Microbiol 31, 46-51.

Reverter-Branchat, G., Cabiscol, E., Tamarit, J., and Ros, J. (2004). Oxidative damage to specific proteins in replicative and chronological-aged Saccharomyces cerevisiae: Common targets and prevention by calorie restriction. J Biol Chem 279, 31983-31989.

Rine, J., and Herskowitz, I. (1987). Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116, 9-22.

Rogina, B., and Helfand, S.L. (2004). Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 101, 15998-16003.

Samokhvalov, V., Ignatov, V., and Kondrashova, M. (2004). Reserve carbohydrates maintain the viability of Saccharomyces cerevisiae cells during chronological aging. Mech Ageing Dev 125, 229-235.

Sinclair, D., Mills, K., and Guarente, L. (1998). Aging in Saccharomyces cerevisiae. Annu Rev Microbiol 52, 533-560.

Sinclair, D.A., and Guarente, L. (1997). Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91, 1033-1042.

Smith, A., Ward, M.P., and Garrett, S. (1998). Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. Embo J 17, 3556-3564.

Smith, J.S., and Boeke, J.D. (1997). An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev 11, 241-254.

Smith, J.S., Brachmann, C.B., Celic, I., Kenna, M.A., Muhammad, S., Starai, V., et al. (2000). A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci USA 97, 6658-6663.

Tanner, K.G., Landry, J., Sternglanz, R., and Denu, J.M. (2000). Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci USA 97, 14178-14182.

Tissenbaum, H.A., and Guarente, L. (2001). Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227-230.

Vaziri, H., Dessain, S.K., Ng Eaton, E., Imai, S.I., Frye, R.A., Pandita, T.K., et al. (2001). hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107, 149-159.

Vellai, T., Takacs-Vellai, K., Zhang, Y., Kovacs, A.L., Orosz, L., and Muller, F. (2003). Genetics: Influence of TOR kinase on lifespan in C. elegans. Nature 426, 620.

Weindruch, R.H., and Walford, R.L. (1988). The Retardation of Aging and Disease by Dietary Restriction. (Springfield, IL., Thomas).

This page intentionally left blank

Was this article helpful?

0 0
How to Stay Young

How to Stay Young

For centuries, ever since the legendary Ponce de Leon went searching for the elusive Fountain of Youth, people have been looking for ways to slow down the aging process. Medical science has made great strides in keeping people alive longer by preventing and curing disease, and helping people to live healthier lives. Average life expectancy keeps increasing, and most of us can look forward to the chance to live much longer lives than our ancestors.

Get My Free Ebook


Post a comment