References

1. RFH Dekker, GN Richards. Hemicellulases: their occurrence, purification, properties, and mode of action. Adv Carbohydr Chem Biochem 32:277-352, 1976.

2. PJ Reilly. Xylanases: structure and function. Basic Life Sci 18:11-129, 1981.

3. P Biely. Microbial xylanolytic systems. Trends Biotechnol 3:286-290, 1985.

4. K-EL Eriksson, RA Blanchette, P Ander. Biodegradation of hemicelluloses. In: TE Timell, ed. Microbial and Enzymatic Degradation of Wood and Wood Components. Berlin: Springer-Verlag, 1990, pp 181-224.

5. MP Coughlan, GP Hazelwood. ß-1,4-Xylan-degrad-ing enzyme systems: biochemistry, molecular biology and biotechnology. Biotechnol Appl Biochem 17:259289, 1993.

6. J Visser, G Beldman, MA Kusters-Van Someren, AGJ Voragen, ed. Xylans and Xylanases. Amsterdam: Elsevier Science 1992.

7. MP Coughlan, GP Hazelwood, ed. Hemicellulose and Hemicellulases. London: Portland Press, 1993.

8. RL Uffen. Xylan degradation: a glimpse at microbial diversity. J Ind Microbiol Biotechnol 19:1-6, 1997.

9. RA Prade. Xylanases: from biology to biotechnology. Biotechnol Gen Eng Rev 13:101-131, 1995.

10. IA Preece, M MacDougal. Enzymic degradation of cereal hemicelluloses. II. Patterns of pentosan degradation. J Inst Brew 64:489-500, 1958.

11. L Taiz, RL Jones. Production of cell wall hydrolyzing enzymes in barley aleurone layers in response to gib-belerellic acid. Plant Physiol 58:380-386, 1972.

12. GB Fincher. Cell wall metabolism in barley. In: PR Shewry, ed. Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology. Wallingford: CAB International 1992, pp 413-437.

13. G Cleemput, M Hessing, M van Oort, M Deconynck, JA Delcour. Purification and characterization of a ß-D-xylosidase and an endo-xylanase from wheat flour. Plant Physiol 113:377-386, 1997.

14. G Cleemput, K Van Leare, M Hesing, F Van Leuven, S Torrekens, JA Delcour. Identification and characterization of a novel arabinoxylanase from wheat flour. Plant Physiol 115:1619-1627, 1977.

15. C-S Gong, LF Chen, MC Flickinger, GT Tsao. Conversion of hemicellulose carbohydrates. Adv Biochem Eng 20:93-118, 1981.

16. B Hahn-Hagerdahl, H Jeppsson, K Skoog, BA Prior. Biochemistry and physiology of xylose fermenting yeast. Enzyme Microb Technol 16:933943, 1994.

17. K Koga, S Fujikawa. Xylooligosaccharides. In: T Nakakuki, ed. Oligosaccharides. Production, Properties, and Applications. Switzerland: Gordon and Breach Science Publishers, 1993, pp 130-143.

18. KKY Wong, JN Saddler. Application of hemicellu-lases in the food, feed, and pulp and paper industries. In; MP Coughlan, GP Hazlewood, eds. Hemicellulose and Hemicellulases. London: Portland Press, 1993, pp 127-143.

19. HJ Gilbert, GP Hazlewood. Bacterial cellulases and xylanases. J Gen Microbiol 139:187-194, 1993.

20. G Annison. The role of wheat non-starch polysaccharides in broiler nutrition. Aust J Agric Res 44:405-422, 1993.

21. G Annison, M Choet. Plant polysaccharides—their physicochemical properties and nutritional roles in monogastric animals. In: TP Lyons, KA Jacques, eds. Biotechnology in the Feed Industry. Nottingham: Alltech, 1994, pp 51-66.

22. MR Bedford, HL Classen. The influence of dietary xylanase on intestinal viscosity and molecular weight distribution of carbohydrates in rye-fed broiler chicks. In; J Visser, G Beldman, MA Kusters-Van Someren, AGJ Voragen, eds. Xylans and Xylanases. Amsterdam: Elsevier Science, 1992, pp 361-370.

23. AJ Morgan, H Graham, MR Bedford. Xylanases improve wheat and rye diets by reducing chick gut viscosity. In: C Wenk, M Boessinger, eds. Enzymes in Animal Nutrition (Proceedings of the 1st symposium, Kartause, Ittingen, Switzerland), Zurich, 1993, pp 73-77.

24. B McCleary. Enzymatic modification of plant polysaccharides. Inst J Biol Macromol 8:349-354, 1986.

25. J Maat, M Roza, J Verbakel, H Stam, MJ Santos da Silva, M Bose, MR Egmond, MLD Hagemans, RFM Gorcom, JGM Hessing, CAMJJ Hondel, C Rotterdam. Xylanases and their application in bakery. In: J Visser, G Beldman, MA Kusters-Van Someren, AGJ Voragen, eds. Xylans and Xylanases. Amsterdam: Elsevier Science, 1992, pp 349-360.

26. X Rouau. Investigations into the effects of an enzyme preparation for baking on wheat flour dough pentosans. J Cereal Sci 18:145-157, 1993.

27. X Rouau, D Moreau. Modification of some physico-chemical properties of wheat flour pentosans by an enzyme complex recommended for baking. Cereal Chem 70:626-632, 1993.

28. X Rouau, M-L El-Hayek, D Moreau. Effect of an enzyme preparation containing pentosanases on the bread-making quality of flours in relation to changes in pentosan properties. J Cereal Sci 19:259-272, 1994.

29. K Autio, H Harkonen, P Aman, T Parkkonen, T Frigard, M Siika-aho, K Poutanen. Effects of purified endo-ß-xylanase and endo-ß-glucanase on the structural and baking characteristics of rye doughs. Lebensmittel Wissenschaft und Technologie 29:1827, 1996.

30. A Monfort, A Blasco, JA Prieto, P Sanz. Combined expression of Aspergillus nidulans endoxylanase X24 and Aspergillus oryzae «-amylase in industrial baker's yeasts and their use in bread making. Appl Environ Microbiol 62:3712-3715, 1996.

31. L Viikari, A Kantelinen, J Sundquist, M Linko. Xylanases in bleaching: from an idea to the industry. FEMS Microbiol Rev 113:335-350, 1994.

32. J Buchert, J Salminen, M Siika-Aho, M Ranua, L Viikari. The role of Trichoderma reesei xylanase and mannanase in treatment of softwood kraft pulp prior to bleaching. Holzforschung 47:473-478, 1993.

33. TK Kirk, TW Jeffries. Roles for microbial enzymes in pulp and paper processing. ACS Ser 655:2-14, 1996.

34. P Baipai. Application of enzymes in the pulp and paper industry. Biotechnol Prog 15:147-157, 1999.

35. MG Paice, L Jurasek. Removing hemicellulose from pulps by specific enzyme hydrolysis. J Wood Chem Technol 4:187-198, 1984.

36. LP Christov, BA Prior. Bleaching response of sulfite pulps to pretreatment with xylanases. Biotechnol Prog 13:695-698, 1997.

37. AMF Milagres, RA Prade. Production of xylanases from Penicillium janthinellum and its use in the recovery of cellulosic textile fibres. Enzyme Microb Technol 15:627-632, 1994.

38. P Baipai. Enzymic deinking. Adv Appl Microbiol 45:242-269, 1996.

39. TE Timmel. Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45-70, 1967.

40. KCB Wilkie. The hemicelluloses of grass and cereals. Adv Carbohydr Chem Biochem 36:215-264, 1979.

41. KCB Wilkie. Hemicellulose. Chem Tech 13:306-319, 1983.

JP Joseleau, J Comtat, K Ruel. Chemical structure of xylans and their interaction in the plant cell walls. In: J Visser, G Beldman, MA Kusters-Van Someren, AGJ Voragen, eds. Xylans and Xylanases. Amsterdam: Elsevier Science, 1992, pp 1-15. J Puls, J Schuseil. Chemistry of hemicelluloses: relationship between hemicellulose structure and enzymes required for hydrolysis. In: MP Coughlan, GP Hazlewood, eds. Hemicellulose and Hemicellulases. London; Portland Press, 1993, pp 1-27. E Luonteri. Fungal a-Arabinofuranosidases and a-Galactosidases Acting on Polysaccharides. Espoo: VTT Publications, 1998.

I Mueller-Harvey, RD Hartley. Linkage of p-coumar-oyl and feruloyl groups to cell-wall polysaccharides of barley straw. Carbohydr Res 148:71-85, 1986. PA Kroon, MTG Conesa, IJ Colquhoun, G Williamson. Process for the isolation of preparative quantities of [2-O(trans-feruloyl)-a-L-arabinofurano-syl]-(1 ! 5)-L-arabinofuranose from sugarbeet. Carbohydr Res 300:351-354, 1997. GB Fincher, BA Stone. Cell walls and their components in cereal grain technology. In; Y Pomeranz, ed. Advances in Cereal Science and Technology. Vol. III. St. Paul, MN: American Association of Cereal Chemists, 1986, pp 207-296.

T Higuchi. Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol 24:23-63, 1990. A Chesson. Manipulation of fibre degradation: an old theme revisited. In; TP Lyons, KA Jacques, eds. Biotechnology in the Feed Industry. Nottingham: Alltech, 1994, pp 83-98.

T Watanabe, T Koshijima. Evidence for an ester linkage between lignin and glucuronic acid in lignin-car-bohydrate complexes by DDQ-oxidation. Agric Biol Chem 52:2953-2955, 1988.

MP Coughlan, MG Tuohy, EXF Filho, J Puls, M Clayessens, M Vrsanska, MH Hughes. Enzymo-logical aspects of microbial hemicellulases with emphasis on fungal systems. In: MP Coughlan, GP Hazlewood, eds. Hemicellulose and Hemi- cellulases. London; Portland Press, 1993, pp 53-84. FJM Kormelink, AGJ Voragen. Degradation of different [(glucurono)arabino]xylans by combination of purified xylan-degrading enzymes. Appl Microbiol Biotechnol 38:688-695, 1993.

RP de Vries, HCM Kester, CH Poulsen, JAE Benen, J Visser. Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysac-charides. Carbohydr Res 372:401-410, 2000. P Biely, CR MacKenzie, J Puls, H Schneider. Cooperatively of esterases and xylanases in the enzymatic degradation of acetyl xylan. Bio/Technology 4:731-733, 1986.

55. KKY Wong, LUL Tan, JN Saddler. Multiplicity of ft-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev 52:305-317, 1988.

56. NR Gilkes, M Claeyssens, R Aebersold, B Henrissat. A Meinke, H Morrison, DG Kilburn, RAJ Warren, RC Miller Jr. Structural and functional relationship in two families of ft-1,4-glycanases. Eur J Biochem 202:367-377, 1991.

57. NR Gilkes, B Henrissat, DG Kilburn, RC Miller Jr, RAJ Warren. Domains in microbial ft-1,4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev 55:303-315, 1991.

58. B Henrissat, A Bairoch. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293:781-788, 1993.

59. B Henrissat, A Bairoch. Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316:695-696, 1996.

60. C Gaboriaud, V Bissey, T Benchetrit, JP Mornon. Hydrophobic cluster analysis: an efficient new way to compare and analyze amino acid sequences. FEBS Lett 224:149-155, 1987.

61. I Kusakabe, S Ohgushi, T Yasui, T Kobayashi. Structures of the arabinoxylo-oligosaccharides from hydrolytic products of corncob arabinoxylan by a xylanase from Streptomyces. Agric Biol Chem 47:2713-2723, 1983.

62. RL Campbell, DR Rose, WW Wakarchuk, R To, W Sung, M Yaguchi. A comparison of the structure of the 20 kd xylanases from Trichoderma harzianum and Bacillus circulans. In: P Pouminen, T Reinikainen, eds. Trichoderma Cellulases and Other Hydrolases. Helsinki: Fagepaino Oy, 1993, pp 63-72.

63. W Wakarchuk, RL Campbell, WL Sung, J Davoodi, M Yaguchi. Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xyla-nase. Protein Sci 3:467-475, 1994.

64. A Torronen, A Harkki, J Rouvinen. Three dimensional structure of endo-1,4-ft-xylanase II from Trichoderma reesei: two conformational states in the active site. EMBO J 13:2493-2501, 1994.

65. JED Dean, JD Anderson. Ethylene biosynthesis-inducing xylanase. II. Purification and physical characterization of the enzyme produced by Trichoderma viride. Plant Physiol 95:316-323, 1991.

66. AC Grabski, TW Jeffries. Production, purification and characterization of ft-(1,4)-endoxylanase of Streptomyces roseiscleroticus. Appl Environ Microbiol 57:987-992, 1991.

67. U Derewenda, L Swenson, R Green, Y Wei, R Morosoli, F Shareck, D Kluepfel, ZS Derewenda. Crystal structure, at 2.6 A resolution, of the Streptomyces lividans xylanase A, a member of the F

family of ß-1,4-D-glycanases. J Biol Chem 269:2081120814, 1994.

68. GW Harris, JA Jenkins, I Connerton, N Cummings, L Lo Leggio, M Scott, GP Hazlewood, JI Laurie, HJ Gilbert, RW Pickersgill. Structure of the catalytic core of the family F xylanase from Pseudomonas fluor-escens and identification of the xylopentaose-binding sites. Structure 2:1107-1116, 1994.

69. R Dominguez, H Souchon, S Spinelli, Z Dauter, KS Wilson, S Chauvaux, P Beguin, AM Alzari. A common protein fold and similar active site in two distinct families of ß-glycanases. Nat Struct Biol 2:569-576, 1995.

70. A Schmidt, A Schlacher, W Steiner, H Schwab, C Kratky. Structure of the xylanase from Penicillium simplicissimum. Protein Sci 7:2081-2088, 1998.

71. JA Jenkins, LL Legio, G Harris, R Pickersgill. ß-Glucosidase, ß-galactosidase, family A cellulases, family F xylanases and two barley glycanases form a superfamily of enzymes with 8-fold ß/a architecture and with two conserved glutamates near the carboxy-terminal ends of ß-strands four and seven. FEBS Lett 362:281-285, 1995.

72. A Torronen, CP Kubicek, B Henrissat. Amino acid sequence similarities between low molecular weight endo-ß-1,4-xylanases and family H cellulases revealed by cluster analysis. FEBS Lett 321:135-139, 1993.

73. PM Coutinho, B Henrissat. Carbohydrate-active enzymes: an integrated database approach. In: HJ Gilbert, GJ Davies, B Henrissat, S Svensson, eds. Recent Advances in Carbohydrate Bioengineering. Cambridge: Royal Society of Chemistry, 1999, pp 312.

74. AB Boraston, BW McLean, JM Kormos, M Alam, NR Gilkes, CA Haynes, P Tomme, DG Kilburn, RAJ Warren. Carbohydrate-binding modules: diversity of structure and function. In: HJ Gilberg, GJ Davies, B Henrissat, S Svensson, eds. Recent Advances in Carbohydrate Bioengineering. Cambridge: Royal Society of Chemistry, 1999, pp 202-211.

75. MP Williamson, PJ Simpson, DN Bolam, GP Hazlewood, A Ciruela, A Cooper, HJ Gilbert. How the N-terminal xylan-binding domain from C. fimi xylanase D recognizes xylan. In: HJ Gilbert, GJ Davies, B Henrissat, S Svensson, eds. Recent Advances in Carbohydrate Bioengineering. Cambridge: Royal Society of Chemistry, 1999, pp 3-12.

76. KA McAllister, L Marrone, AJ Clarke. Structure and function relationship of family 11 xylanases. In: HJ Gilbert, GJ Davies, B Henrissat, S Svensson, eds. Recent Advances in Carbohydrate Bioengineering. Cambridge: Royal Society of Chemistry, 1999, pp 89-98.

77. C Dupond, M Roberge, F Shareck, R Morosoli, D Kluepfel. Substrate-binding domains of glycanases from Streptomyces lividans: characterization of a new family of xylan-binding domains. Biochem J 330:41-45, 1998.

78. J Gill, JE Rixon, DN Bolan, S McQueen-Mason, PJ Simpson, MP Williamson, GP Hazlewood, HJ Gilbert. The type II and X cellulose-binding domains of Pseudomonas xylanase. A potentiate catalytic activity against complex substrates by a common mechanism. Biochem J 342:473-480, 1999.

79. HJ Flint, CF Forsberg. Polysaccharide degradation in the rumen: biochemistry and genetics. In: W Engelhardt, S Leonhard-Merek, G Breves, D Giesicke, eds. Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction. Stuttgart: F Enke Verlag, 1995, pp 43-70.

80. JX Zhang, HJ Flint. A bifunctional xylanase encoded by the xynA gene of the rumen cellulolytic bacterium Ruminococcus flavefaciens 17 comprises two dissimilar domains linked by asparagine/glutamine rich sequence. Mol Microbiol 6:1013-1023, 1992.

81. HJ Gilbert, GP Hazlewood, JI Laurie, CG Orpin, GP Xue. Homologous catalytic domains in a rumen fungal xylanase: evidence for geneduplication and prokaryotic origin. Mol Microbiol 6:2065-2072, 1992.

82. JI Laurie, JH Clarke, A Ciruela, CB Faulds, G Williamson, HJ Gilbert, JE Rixon, J Millward-Sadler, GP Hazlewood. The NodB domain of a multifunctional xylanase from Cellulomonas fimi deacety-lates acetylxylan. FEMS Microbiol Lett 148:261264, 1997.

83. AC Fernandes, CMGA Fontes, HJ Gilbert, GP Hazlewood, TH Fernandes, LMA Ferreira. Homologous xylanases from Clostridium thermocel-lum: evidence for bifunctional activity, synergism between xylanase catalytic modules and the presence of xylan-binding domains in enzyme complexes. Biochem J 342:105-110, 1999.

84. H Hayashi, M Takehara, T Hattori, T Kimura, S Karita, K Sakka, K Ohmiya. Nucleotide sequences of two contiguous and highly homologous xylanase genes xynA and xynB from Clostridium thermocellum. Appl Microbiol Biotechnol 51:348-357, 1999.

85. Y Shoham, R Lamed, EA Bayer. The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol 7:275-281, 1999.

86. A Sunna, G Antranikian. Xylanolytic enzymes from fungi and bacteria. Crit Rev Biotechnol 17:39-67, 1997.

87. P Biely, D Kluepfel, R Morosoli, F Shareck. Mode of action of three endo-ß-1,4-xylanases from

Streptomyces lividans. Biochim Biophys Acta 1162:246-254, 1993.

88. P Biely, M Vrsanska, M Tenkanen, D Kluepfel. Endo-ß-1,4-xylanase families: differences in catalytic properties. J Biotechnol 57:151-166, 1997.

89. P Biely, M Vrsanska, L Kremnicky, M Tenkanen, K Poutanen, M Hayn. Catalytic properties of endo-ß-1,4-xylanases of Trichoderma reesei. In: P Souminen, T Reinikainen, eds. Trichoderma Cellulases and Other Hydrolases. Helsinki: Fagepaino Oy, 1993, pp 125135.

90. FJM Kormelink, MJF Searle-Van Leewen, TM Wood, AGJ Voragen. Purification and characterization of three endo-(1,4)-ß-xylanases and one ß-xylosi-dase from Aspergillus awamori. J Biotechnol 27:249265, 1993.

91. P Biely, M Vrsanska. Synthesis and hydrolysis of 1,3-ß-xylosidic linkages by endo-ß-1,4-xylanase of Cryptococcus albidus. Eur. J Biochem 129:645-561, 1983.

92. WP Chen, M Matuo, T Yasui. ß-1,3-Xylanase and ß-1,4-xylanase action on rhodymenan. Agric Biol Chem 50:1195-1200, 1986.

93. H van Tilbeurgh, M Claeyssens. Detection and differentiation of cellulase components using low molecular mass fluorogenic substrates. FEBS Lett 187:283-288, 1985.

94. P Biely, M Vrsanska, MK Bhat. Interaction of endo-ß-1,4-xylanases with compounds containing D-gluco-pyranosyl residues. In: M Claeyssens, W Nerinckx, K Piens, eds. Carbohydrases from Trichoderma and Other Microorganisms: Structure, Biochemistry, Genetics. Cambridge: Royal Society of Chemistry, 1998, pp 94-101.

95. P Biely, M Vrsanska, Z Kratky. Complex reaction pathways of aryl ß-xyloside degradation by ß-xylanase of Cryptococcus albidus. Eur J Biochem 112:375-381, 1980.

96. P Biely, Z Kratky, M Vrsanska. Substrate-binding site of endo-1,4-ß-xylanase of the yeast Cryptococcus albi-dus. Eur J Biochem 119:559-564, 1981.

97. P Biely, M Vrsanska, IV Gorbacheva. Active site of an acidic endo-1,4-ß-xylanase of Aspergillus niger. Biochim Biophys Acta 743:155-161, 1983.

98. MR Bray, AJ Clarke. Action pattern of xylooligosac-charide hydrolysis by Schizophyllum commune xyla-nase. Eur J Biochem 204:191-196, 1992.

99. A Torronen, J Rouvinen. Structural and functional properties of low molecular weight endo-1,4-ß-xyla-nases. J Biotechnol 57:137-149, 1997.

100. J Gebler, NR Gilkes, M Claeyssens, DB Wilson, P Beguin, WW Wakarchuk, DG Kilburn, RC Miller JR, RA Warren, SG Withers. Stereo-selective hydrolysis catalyzed by related ß-1,4-glu-

canases and ^-1,4-xylanases. J Biol Chem 267: 12559-12561, 1992.

101. P Biely, L Kremnicky, J Alfodi, M Tenkanen. Stereochemistry of hydrolysis of glycosidic linkage by endo-^-1,4-xylanases of Trichoderma reesei. FEBS Lett 356:137-140, 1994.

102. ML Sinnott. Catalytic mechanism of enzymic glycosyl transfer. Chem Rev 90:1171-1202, 1990.

103. SG Withers. Enzymatic cleavage of glycosides: how does it happen? Pure Appl Chem 67:1673-1682, 1995.

104. P Biely, M Vrsanska, Z Kratky. Mechanism of substrate digestion by endo-1,4-^-xylanase of Cryptococcus albidus. Lysozyme-type pattern of action. Eur J Biochem 119:565-571, 1981.

105. P Biely, M Vrsanska, IV Gorbacheva. Reaction pathways of substrate degradation by an acidic endo-1,4-^-xylanase of Aspergillus niger. Biochim Biophys Acta 704:114-122, 1982.

106. U Hakansson, LG Fagerstam, G Pettersson, L Anderson. A 1,4-^-glucan glucanohydrolase from the cellulolytic fungus Trichoderma viride QM 9414. Biochem J 179:141-149, 1979.

107. S Shomaker, K Watt, G Tsisovsky, R Cox. Characterization and properties of cellulases purified from Trichoderma reesei strain L27. Bio/Technology 1:687-690, 1983.

108. P Biely, M Vrsanska, M Claeyssens. The endo 1,4-£-glucanase I from Trichoderma reesei. Action on ^-1,4-oligomers and polymers derived from D-glucose and D-xylose. Eur J Biochem 200:157-163, 1991.

109. M Somogyi. A reagent for the copper-iodometric determination of very small amounts of sugar. J Biol Chem 117:771-776, 1937.

110. N Nelson. A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375-380, 1944.

111. LG Paleg. Citric acid interference in the estimation of reducing sugars with alkaline copper reagent. Anal Chem 31:1902-1904, 1959.

112. J Sumner. Dinitrosalicylic acid: a reagent for the estimation of sugar in normal diabetic urine. J Biol Chem 47:5-9, 1921.

113. GL Miller. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426428, 1959.

114. GL Miller, R Blum, WE Glennon, AL Burton. Measurement of carboxymethylcellulase activity. Anal Biochem 2:127-132, 1960.

115. MJ Bailey, P Biely, K Poutanen. Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257-270, 1992.

116. TW Jeffries, VW Yang, MW Davies. Comparative study of xylanase kinetics using dinitrosalicylic, arsenomolybdate, and ionchroma-

tographic assays. Appl Biochem Biotechnol 70-72: 257-265, 1998.

EM Gingler. Automated determination of glucose via reductive formation of lavende Cu(I)-2,2 '-bicincho-nate chelate. Clin Chem 16:519, 1970. S Waffenschmidt, L Jaenicke. Assay of reducing sugars in the nanomole range with 2,2'-bicinchonine. Anal Biochem 165:337-340, 1987. JD Fox, JF Robyt. Miniaturization of three carbohydrate analyses using a microscale plate reader. Anal Biochem 195:93-96, 1991.

P Biely, M Vrsanska. Xylanase of Cryptococcus albi-dus. Methods Enzymol 160:638-648, 1988. GF Fincher, AB Stone. Some chemical and morphological changes induced by gibberellic acid in embryofree wheat grain. Aust J Plant Physiol 1:297-311, 1974.

IV Gorbacheva, NA Rodionova. Studies on xylan degrading enzymes. I. Purification and characterization of endo-1,4-ft-xylanase from Aspergillus niger, str. 14. Biochim Biophys Acta 484:79-93, 1977. S Sengupta, S Khowala, PK Goswami. Assay of endo--D-xylanase activity with a soluble O-carboxymethyl derivatives of larchwood xylan. Carbohydr Res 167:156-161, 1987.

P Biely, D Mislovicova, R Toman. Soluble chromo-genic substrates for the assay of endo-1,4-ft-xylanases and endo-1,4-ft-glucanases. Anal Biochem 144:142146, 1985.

M Nummi, JM Perrin, ML Niku-Paavola, TM Enari. Measurement of xylanase activity with insoluble xylan substrate. Biochem J 226:617-620, 1985. D Robinson, P Willcox. 4-Methylumbelliferyl phosphate as a substrate for lysosomal acid phosphatase. Biochim Biophys Acta 191:183-186, 1969. KR Gee, W-C Sun, MK Bhalgat, RH Upton, DH Klaubert, KA Latham, RP Hugland. Fluorogenic substrates based on fluorinated umbelliferones for continuous assays of phosphatases and ft-galactosi-dase. Anal Biochem 273:41-48, 1999. M Hrmova, P Biely, M Vrsanska, Specificy of cellu-lase and ft-xylanase induction in Trichoderma reesei QM 9414. Arch Microbiol 144:307-311, 1986. S. Badarkar, NR Gilkes, DG Kilburn, E Kwan, DS Rose, RC Miller Jr, RAJ Warren, SG Withers. Crystallization and preliminary x-ray diffraction analysis of the catalytic domain of Cex, an exo-ft-1,4-glu-canase and ft-1,4-xylanase from bacterium Cellulomonas fimi. J Mol Biol 228:693-695, 1992. P Biely, M Vrsanska, S Kucar. Identification and mode of action of endo-(1-4)-ft-xylanases. In: J Visser, G Beldman, MA Kusters-Van Someren, AGJ Voragen, eds. Xylans and Xylanases. Amsterdam: Elsevier Science, 1992, pp 81-95. M Kitaoka, K Haga, Y Kashiwagi, T Sasaki, H Taniguchi, I Kusakabe. Kinetic studies on p-nitrophe-

nyl cellobioside hydrolyzing xylanase from Celvibrio gilvus. Biosci Biotechnol Biochem 57:1987-1989, 1993.

132. L Ziser, SG Withers. A short synthesis of ft-xylobio-sides. Carbohydr Res 265:9-17, 1994.

133. P. Christakopoulos, W Nerinckx, D Kekos, B Macris, M Claeyssens. Purification and characterization of two low molecular mass alkaline xylanases from Fusarium oxysporum F3. J Biotechnol 51:181-189, 1996.

134. M Vrsanska, W Nerinckx, P Biely, M Claeyssens. Fluorogenic substrates for endo-ft-1,4-xylanase. Abstracts of 8th Bratislava Symposium on Saccharides, Smolenice, Slovakia, 1997, p 80.

135. DN Bolam, SJ Charnwood, HJ Gilbert, NA Hughes. Synthesis of 2,4-dinitrophenyl glycosides of D-xylo-biose and D-mannobiose. Carbohydr Res 312:85-89, 1998.

136. B Sprey, C Lambert. Titration curve of cellulase from Trichoderma reesei: demonstration of a cellulase-xyla-nase-ft-glucosidase containing complex. FEMS Microbiol Lett 18:217-222, 1983.

137. V Farkas, M Liskova, P Biely. Novel media for detection of microbial producers of cellulase and xylanase. FEMS Microbiol Lett 28:137-140, 1985.

138. D Kluepfel. Screening of prokaryotes for cellulose-and hemicellulose-degrading enzymes. Methods Enzymol 160:180-186, 1988.

139. RM Theather, PJ Wood. Use of Congo Red-polysac-charide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777-780, 1982.

140. B Flannigan, JEM Gilmour. A simple plate test for xylanolytic activity in wood-rotting Basidiomycetes. Mycologia 72:1219-1221, 1980.

141. PJ Wood, JD Erfle, RM Teather. Use of complex formation between Congo Red and polysaccharides in detection and assay of polysaccharide hydrolases. Methods Enzymol 160:59-74, 1988.

142. P Biely, O Markovic, D Mislovicova. Sensitive detection of endo-1,4-ft-glucanases and endo-1,4-ft-xyla-nases in gels. Anal Biochem 144:147-151, 1985.

143. CR MacKenzie, RE Williams. Detection of cellulase and xylanase activity in isoelectric-focusing gels using agar substrate gels supported plastic film. Can J Microbiol 30:1511-1525, 1984.

144. FJM Kormelink. Characterization and mode of action of xylanases and accessory enzymes. PhD dissertation, Agricultural University, Wageningen, Netherlands, 1992.

145. S Voremen, J Heldens, C Boyd, B Henrissat, NT Keen. Cloning and characterization of the bgxA gene from Erwinia chrysanthemi D1 which encodes a ft-glucosidase/xylosidase enzyme. Mol Gen Genet 246465-477, 1995.

146. RP de Vries. Accessory enzymes from Aspergillus involved in xylan and pectin degradation. PhD disser tation, Agricultural University, Wageningen, Netherlands, 1992.

147. E Margolles-Clark, M Tenkanen, T Nakari-Setala, M Penttiia. Cloning of genes encoding a-L-arabinofura-nosidase and 0-xylosidase from Trichoderma reesei by expression in Saccharomyces cerevisiae. Appl Environ Microbiol 62:3840-3846, 1996.

148. E Luthi, DR Love, J McAnulty, C Wallace, PA Caughey, D Saul, P Berquist. Cloning, sequence analysis, and expression of genes encoding xylan-degrading enzymes from the thermophile Caldocellum sac-charolyticum. Appl Environ Microbiol 56:1017-1024, 1990.

149. PL Bergquist, DJ Saul, MD Gibbs, DD Morris, VSJ Te'o, HW Morgan. Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria. FEMS Microbiol Ecol 28:99-110, 1999.

150. S Armand, C Vielle, C Gey, A Heyraud, JG Zeikus, B Henrissat. Stereochemical course and reaction products of the action of 0-xylosidase from Thermoanaerobacterium saccharolyticum strain B6A-RL. Eur J Biochem 236:449-455, 1998.

151. C Braun, A Meinke, L Ziser, SG Withers. Simultaneous high-performance liquid chromato-graphic determination of both the cleavage pattern and the stereochemical outcome of the hydrolysis reactions catalyzed by various glycosidases. Anal Biochem 212:259-262, 1993.

152. T Baba, R Shinke, T Nanmori. Identification and characterization of clustered genes for thermostable xylan-degrading enzymes, 0-xylosidase and xylanase, of Bacillus stearothermophilus 21. Appl Environ Microbiol 60:2252-2258, 1994.

153. H Oh, Y Choi. Sequence analysis of 0-xylosidase gene from Bacillus stearothermophilus. Kor J Appl Microbiol Biotechnol 22:134-142, 1994.

154. M Claeyssens, E Samen, H Kersters-Hilderson, CK De Bruyne. 0-D-Xylosidase from Bacillus pumilus. Molecular properties and oligomeric structure. Biochim Biophys Acta 405:475-481, 1975.

155. A Shinmyo, W Panbangred, S Negoro, H Okada. Cloning of 0-xylosidase gene of Bacillus pumilus in Escherichia coli. Proc Int Symp Genet Ind Microorg, 4th Meeting, 1982, p 68.

156. M Claeyssens, E Van Leemputten, FG Loontiens, CK De Bruyne. Transfer reactions catalyzed by a fungal 0-D-xylosidase: enzymic synthesis of phenyl 0-D-xylo-bioside. Carbohydr Res 3:32-37, 1966..

157. H Kizawa, H Shinoyama, T Yasui. The synthesis of new xylooligosaccharides by transxylosylation with Aspergillus niger 0-xylosidase. Agric Biol Chem 55:671-678, 1991.

158. J Sulistyo, Y Kamiyama, T Yasui. Purification and properties of Aspergillus pulverulentum 0-xylosidase with transxylosylation capacity. J Ferment Bioeng 79:17-22, 1995.

159. MC Herrmann, M Vrsanka, M Jurickova, J Hirsch, P Biely, CP Kubicek. The 0-D-xylosidase of Trichoderma reesei is a multifunctional 0-D-xylan xylohydrolase. Biochem J 321:375-381, 1997.

160. A Lappalainen. Purification and characterization of xylanolytic enzymes of Trichoderma reesei. Biotechnol Appl Biochem 8:437-448, 1986.

161. M Matsuo, T Yasui. Purification and some properties of 0-xylosidase from Trichoderma viride. Agric Biol Chem 48:1853-1860, 1984.

162. K Poutanen, J Puls. Characteristics of Trichoderma reesei 0-xylosidase and its use in the hydrolysis of solubilized xylans. Appl Microbiol Biotechnol 28:425-432, 1988.

163. FJM Kormelink, H Gruppen, RJ Vietor, AGJ Voragen. Mode of action of the xylan-degrading enzymes from Aspergillus awamori on alkali-extracta-ble cereal arabinoxylans. Carbohydr Res 249:355-367,

0 0

Post a comment