Formation of a Polypeptide

The anticodons of tRNA bind to the codons of mRNA as the mRNA moves through the ribosome. Since each tRNA molecule carries a specific amino acid, the joining together of these amino acids by peptide bonds creates a polypeptide whose amino acid sequence has been determined by the sequence of codons in mRNA.

The first and second tRNA bring the first and second amino acids close together. The first amino acid then detaches from its tRNA and is enzymatically transferred to the amino

■ Figure 3.22 The structure of transfer RNA (tRNA). (a) A

simplified cloverleaf representation and (b) the three-dimensional structure oftRNA.

acid on the second tRNA, forming a dipeptide. When the third tRNA binds to the third codon, the amino acid it brings forms a peptide bond with the second amino acid (which detaches from its tRNA). A tripeptide is now attached by the third amino acid to the third tRNA. The polypeptide chain thus grows as new amino acids are added to its growing tip (fig. 3.23). This growing polypeptide chain is always attached by means of only one tRNA to the strand of mRNA, and this tRNA molecule is always the one that has added the latest amino acid to the growing polypeptide.

As the polypeptide chain grows in length, interactions between its amino acids cause the chain to twist into a helix (secondary structure) and to fold and bend upon itself (tertiary structure). At the end of this process, the new protein detaches from the tRNA as the last amino acid is added. Many proteins are further modified after they are formed; these modifications occur in the rough endoplasmic reticulum and Golgi complex.

Blood Pressure Health

Blood Pressure Health

Your heart pumps blood throughout your body using a network of tubing called arteries and capillaries which return the blood back to your heart via your veins. Blood pressure is the force of the blood pushing against the walls of your arteries as your heart beats.Learn more...

Get My Free Ebook

Post a comment