Summary

The HIV-1 envelope glycoprotein demonstrates an unusual degree of complex posttranslational glycosylation with both high-mannose and complex-type N-linked oligosaccharides. The relative conservation of these sites on gp 120/41 may indicate an evolutionarily important function for carbohydrate moieties. These functions may involve the protection of the viral protein from nonspecific proteolysis. In addition, carbohydrate expression affects the tertiary and quaternary structure of monomers and oligomers. These changes may affect cell tropism and/or immune escape. Glycans play a critical role in both humoral and cellular immune responses to viruses. During mutation and selection, sites can be added or deleted, resulting in antigenic variation and effectively masking or directing antibody responses to nonneutralizing sites. Carbohydrates have been shown to interfere with peptide presentation by antigen-presenting cells. Therefore it is also plausible that the heavy glycosylation of HIV-1 interferes with (1) proteolytic degradation into peptides, (2) peptide binding to MHC, and (3) recognition of the MHC peptide complex by T lymphocytes. Glycosylation should also result in tolerance for HIV-1. Consequently, following exposure, there is an inability to evoke a specific immune response to viral epitopes that are protective in nature. These aspects point out the importance of targeting carbohydrate antigens on HIV-1 in vaccine strategies or redirecting immune responses. In vaccine design for HIV-1, carbohydrates, while having profound biological and immunological roles in the pathophysiology of HIV infection, have been understudied and basically forgotten entities.

REFERENCES

1. Mbemba, E., Carre, V., Atemezem, A., Saffar, L., Gluchan, J. C., and Gattegno, L., 1996, Inhibition of human immunodeficiency virus infection of CD4+ cells by CD4-free glyco-peptides from monocytic U937 cells, AIDS Res. Hum. Retrovir. 12:47-53.

2. Bhat, S., Mettus, R. V., Reddy, E. P., Ugen, K. E., Srikanthan, V., Williams, W. V., andWeiner, D. B., 1993, The galactosyl ceramide/sulfatide receptor binding region of HIV-1 gp120 maps to amino acids 206275, AIDS Res. Hum. Retrovir. 9:175-181.

3. Pearce, P. R., and Phillips, D. M., 1996, Sulfated polysaccharides inhibit lymphocyte-to-epithelial transmission of human immunodeficiency virus-1, Biol. Reprod. 54:173-182.

4. Leydet, A., Jeantet, S. C., Bouchitte, C., Moullet, C., Boyer, B., Roque, J. P., Witvrouw, M., Este, J., Snoeck, R., Andrei, G., and De, C. E., 1997, Polyanion inhibitors of human immunodeficiency virus and other viruses. 6. Mecille-like anti-HIV polyanionic compounds based on a carbohydrate core, J. Med. Chem. 40:350-356.

5. Bernstein, H. B., Tucker, S. P., Hunter, E., Schutzbach, J. S., and Compans, R. W., 1994, Human immunodeficiency virus type 1 envelope glycoprotein is modified by 0-linked oligosaccharides, J. Virol. 68:463-468.

6. Gram, G. J., Hemming, A., Bolmstedt, A., Jansson, B., Olofsson, S., Akerblom, L., Nielsen, J. O., and Hansen, J. E., 1994, Identification of an N-linked glycan in the V1-loop of HIV-1 gp120 influencing neutralization by anti-V3 antibodies and soluble CD4, Arch. Virol. 139:253-261.

7. Liedtke, S., Adamski, M., Geyer, R., Pfutzner, A., Rubsamen, W. H., and Geyer, H., 1994, Oligosaccharide profiles of HIV-2 external envelope glycoprotein: Dependence on host cells and virus isolates, Glycobiology 4:477-484.

8. Trkola, A., Purtscher, M., Muster, T., Ballaun, C., Buchacher, A., Sullivan, N., Srinivasan, K., Sodroski, J., Moore, J. P., and Katinger, H., 1996, Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1, J. Virol. 70:1100-1108.

9. Moore,J. P., Cao, Y., Qing, L., Sattentau, Q. J., F'yati,J., Koduri, R., Robinson,J., Barbas, C.,

Burton, D. R., and Ho, D. D., 1995, Primary isolates ofhuman immunodeficiencyvirus type 1 are relatively resistant to neutralization by monoclonal antibodies to gp120, and their neutralization is not predicted by studies with monomeric gp120, J. Virol. 69:101-109.

10. Hansen, J. E., Jansson, B., Gram, G. J., Clausen, H., Nielsen, J. O., and Olofsson, S., 1996, Sensitivity of HIV-1 to neutralization by antibodies against 0-linked carbohydrate epitopes despite deletion of O-glycosylation signals in the V3 loop, Arch. Virol. 141:291-300.

11. Clark, G. F., Dell, A., Morns, H. R., Patankar, M., Oehninger, S., and Seppala, M., 1997, Viewing AIDS from a glycobiological perspective: Potential linkages to the human feto-embryonic defence system hypotheses, Mol. Hum. Reprod. 3:5-13.

12. Nara, P., 1996, Humoral immunity to HIV-1: Lethal force or trojan horse, in: Immunology of HIV Infection (S. Gupta, ed.), Plenum Press, New York, pp. 243-276.

13. Fenouillet, E., Gluckman, J. C., and Jones, I. M., 1994, Functions of HIV envelope glycans, Trends Biochem. Sci. 19:65-70.

14. Zanetta,J. P., Badache, A., Maschke, S., Marschal, P., and Kuchler, S., 1994, Carbohydrates and soluble lectins in the regulation of cell adhesion and proliferation, Histol. Histopathol. 9:385-412.

15. Preston, A., Mandrell, R. E., Gibson, B. W., and Apicella, M. A., 1996, The lipooligosac-charides ofpathogenic Gram-negative bacteria, Crit. Rev. Microbiol. 22:139-180.

16. Moran, A. P., Prendergast, M. M., and Appelmelk, B. J., 1996, Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease, FEMS Immunol. Med. Microbiol. 16:105-115.

17. Appelmelk, B.J., Simoons, S. I., Negrini, R., Moran, A. P., Aspinall, G. O., Forte,J. G., De, V. T., Quan, H., Verboom, T., Maaskant, J. J., Ghiara, P., Kuipers, E. J., Bloemena, E., Tadema, T. M., Townsend, R. R., et al., 1996, Potential role ofmolecular mimicry between Helicobacter pylori lipopolysaccharide and host Lewis blood group antigens in autoimmunity, Infection Immunity 64:2031-2040.

18. Muller, W. E., Bachmann, M., Weiler, B. E., Schroder, H. C., Uhlenbruck, G., Shinoda, T., Shimizu, H., and Ushjima, H., 1991, Antibodies against defined carbohydrate structures of Candida albicans protect H9 cells against infection with human immunodeficiency virus-1 in vitro, J. Acquired Immune Defic. Syndr. 4:694-703.

19. McAlarney, T., Ogino, M., Apostolski, S., and Latov, N., 1995, Specificity and cross-reactivity of anti-galactocerebroside antibodies, Immunol. Inv. 24:595-606.

20. Hansen, J. E., Clausen, H., Hu, S. L., Nielsen, J. O., and Olofsson, S., 1992, An 0-linked carbohydrate neutralization epitope of HIV-1 gp120 is expressed by HIV-1 env gene recombinant vaccinia virus, Arch. Virol. 126:11-20.

21. Hansen, J. E., Nielsen, C., Arendrup, M., Olofsson, S., Mathiesen, L., Nielsen, J. O., and Clausen, H., 1991, Broadly neutralizing antibodies targeted to mucin-type carbohydrate epitopes of human immunodeficiency virus, J. Virol. 65:6461-6467.

22. Back, N. K., Smit, L., De, J. J., Keulen, W., Schutten, M., Goudsmit, J., and Tersmette, M., 1994, An N-glycan within the human immunodeficiency virus type 1 gp120 V3 loop affects virus neutralization, Virology 199:431-438.

23. Arendrup, M., Hansen, J. E., Clausen, H., Nielsen, C., Mathiesen, L. R., and Nielsen, J. O., 1991, Antibody to histo-blood group A antigen neutralizes HIV produced by lymphocytes from blood group A donors but not from blood group B or 0 donors, AIDS 5:441-444.

24. Dabelsteen, E., 1996, Cell surface carbohydrates as prognostic markers in human carcinomas, J. Pathol. 179:358-369.

25. Lefebvre,J. C., Giordanengo, V., Doglio, A., Cagnon, L., Breittmayer, J. P., Peyron,J. F., and Lesimple, J., 1994, Altered sialylation of CD45 in HIV-1-infected T lymphocytes, Virology 199:265-274.

26. Lefebvre, J. C., Giordanengo, V., Limouse, M., Doglio, A., Cucchiarini, M., Monpoux, F.,

Mariani, R., and Peyron, J. F., 1994, Altered glycosylation of leukosialin, CD43, in HIV-1-infected cells of the CEM line, J. Exp. Med. 180:1609-1617.

27. Adachi, M., Hayami, M., Kashiwagi, N., Mizuta, T., Ohta, Y., Gill, M. J., Matheson, D. S., Tamaoki, T., Shiozawa, C., and Hakomori, S., 1988, Expression of LeY antigen in human immunodeficiency virus-infected human T cell lines and in peripheral lymphocytes of patients with acquired immune deficiency syndrome (AIDS) and AIDS-related complex (ARC), J. Exp. Med. 167:323-331.

28. Gattegno, L., Ramdani, A., Joualt, T., Saffar, L., and Gluckman, J. C., 1992, Lectin-carbohydrate interactions and infectivity ofhuman immunodeficiency virus type 1 (HIV-1), AIDS Res. Hum. Retrovir. 8:27-37.

29. Kashiwagi, N., Gill, M. J., Adachi, M., Church, D., Wong, S. J., Poon, M. C., Hakomori, S., Tamaoki, T., and Shiozawa, C., 1994, Lymphocyte membrane modifications induced by HlV infection, Tohoku J. Exp. Med. 173:115-131.

30. Hamadeh, R M., Galili, U., Zhou, P., and Griffiss,J. M., 1995, Anti-alphagalactosyl immunoglobulin A (IgA), IgG, and IgM in human secretions, Clin. Diag. Lab. Immunol. 2:125-131.

31. Teneberg, S., Lonnroth, I., Torres, L. J., Galili, U., Halvarsson, M. O., Angstrom, J., and Karlsson, K. A., 1996, Molecular mimicry in the recognition of glycosphingolipids by Gal alpha 3 Gal beta 4 GlcNAc beta-binding Clostridium difficile toxin A, human natural anti alpha-galactosyl IgG and the monoclonal antibody Gal-13: Characterization of a binding-active human glycosphingolipid, non-identical with the animal receptor, Glycobiology 6: 599-609.

32. Reed, D.J., Lin, X., Thomas, T. D., Birks, C. W., Tang,J., and Rother, R. P., 1997, Alteration of glycosylation renders HIV sensitive to inactivation by normal human serum,J. Immunol. 159:4356-4361.

33. Moore, J. P., Sattentau, Q. J., Wyatt, R., and Sodroski, J., 1994, Probing the structure of the human immunodeficiency virus surface glycoprotein gp120 with a panel of monoclonal antibodies, J. Virol. 68:469-484.

34. Ditzel, H.J,, Parren, P. W., Binley,J. M., Sodroski,J., Moore,J. P., Barbas, C., and Burton, D. R., 1997, Mapping the protein surface of human immunodeficiency virus type 1 gp120 using human monoclonal antibodies from phage display libraries, J. Mol. Biol. 267: 684-695.

35. Sattentau, Q. J., and Moore, J. P., 1995, Human immunodeficiencyvirus type 1 neutralization is determined by epitope exposure on the gp120 oligomer,J. Exp. Med. 182:185-196.

36. Zhang, Y. M., Dawson, S. C., Landsman, D., Lane, H. C., and Salzman, N. P., 1994, Persistence of four related human immunodeficiency virus subtypes during the course of zidovudine therapy: Relationship between virion RNA and proviral DNA, J. Virol. 68: 425-432.

37. Overbaugh, J., Anderson, R. J., Ndinya, A. J., and Kreiss, J. K, 1996, Distinct but related human immunodeficiency virus type 1 variant populations in genital secretions and blood, AIDS Res. Hum. Retrovir. 12:107-115.

38. Gao, F., Morrison, S. G., Robertson, D. L., Thornton, C. L., Craig, S., Karlsson, G., Sodroski, J., Morgado, M., Galvao, C. B., von Briesen, H., et al., 1996, Molecular cloning and analysis of functional envelope genes from human immunodeficiency virus type 1 sequence subtypes A through G. The WHO and NIAID Networks for HIV Isolation and Characterization, J. Virol. 70:1651-1667.

39. Manca, F., 1992, Galactose receptors and presentation of HIV envelope glycoprotein to specific human T cells, J. Immunol. 148:2278-2282.

40. Benjouad, A., Mabrouk, K, Gluckman, J. C., and Fenouillet, E., 1994, Effect of sialic acid removal on the antibody response to the third variable domain of human immunodeficiency virus type-1 envelope glycoprotein, FEBS Lett. 341:244-250.

41. Schonning, K., Jansson, B., Olofsson, S., and Hansen, J. E., 1996, Rapid selection for an N-linked oligosaccharide by monoclonal antibodies directed against the V3 loop of human immunodeficiency virus type 1, J. Gen. Virol. 77:753-758.

42. Huang, X., Barchi,J.J., Lung, F. D., Roller, P. P., Nara, P. L., Muschik,J., and Garrity, R. R., 1997, Glycosylation affects both the three-dimensional structure and antibody binding properties of the HIV-IIIIB Gp120 peptide RP135, Biochemistry 36:10846-10856.

43. Huang, X., Smith, M. C., Berzofsky, J. A., and Barchi,J. J., 1996, Structural comparison ofa 15 residue peptide from the V3 loop of HIV-IIIIb and an O-glycosylated analogue, FEBS Lett. 393:280-286.

44. Bolmstedt, A., Olofsson, S., Sjogren, J. E., Jeansson, S., Sjoblom, I., Akerblom, L., Hansen, J. E., and Hu, S. L., 1992, Carbohydrate determinant NeuAc-Gal beta (1-4) of N-linked glycans modulates the antigenic activity of human immunodeficiencyvirus type 1 glycopro-tein gp120, J. Gen. Virol. 73:3099-3105.

45. Chackerian, B., Rudensey, L. M., and Overbaugh, J., 1997, Specific N-linked and 0-linked glycosylation modifications in the envelope VI domain of simian immunodeficiency virus variants that evolve in the host alter recognition by neutralizing antibodies, J. Virol. 71: 7719-7727.

46. Willey, R. L., Shibata, R., Freed, E. O., Cho, M. W., and Martin, M. A., 1996, Differential glycosylation, virion incorporation, and sensitivity to neutralizing antibodies of human immunodeficiency virus type 1 envelope produced from infected primary T-lymphocyte and macrophage cultures, J. Virol. 70:6431-6436.

47. Sorensen, A. M., Nielsen, C., Arendrup, M., Clausen, H., Nielsen,J. O., Osinaga, E., Roseto, A., and Hansen, J. E., 1994, Neutralization epitopes on HIV pseudotyped with HTLV-I: Conservation of carbohydrate epitopes, J. Acquired Immune Defic. Syndr: 7:116-123; Erratum, J. Acquired Immune Defic. Syndr. 7:740.

48. Arendrup, M., Sonnerborg, A., Svennerholm, B., Akerblom, L., Nielsen, C., Clausen, H., Olofsson, S., Nielsen, J. O., and Hansen, J. E., 1993, Neutralizing antibody response during human immunodeficiency virus type 1 infection: Type and group specificity and viral escape, J. Gen. Virol. 74:855-863.

49. Yu, X. F., Wang, Z., Beyrer, C., Celentano, D. D., Khamboonruang, C., Allen, E., and Nelson, K., 1995, Phenotypic and genotypic characteristics of human immunodeficiency virus type 1 from patients with AIDS in northern Thailand, J. Virol. 69:4649-4655.

50. Kieber-Emmons, T., Jameson, B. A., and Morrow, W. J., 1989, The gp120-CD4 interface: Structural, immunological and pathological considerations, Biochim. Biophys. Acta 989: 281-300.

51. Garrity, R. R., Rimmelzwaan, G., Minassian, A., Tsai, W. P., Lin, G., deJong,J.J., Goudsmit, J., and Nara, P. L., 1997, Refocusing neutralizing antibody response by targeted dampening of an immunodominant epitope, J. Immunol. 159:279-289.

52. Mond, J. J., Lees, A., and Snapper, C. M., 1995, T cell-independent antigens type 2, Annu. Rev. Immunol. 13:655-692.

53. Agadjanyan, M., Luo, P., Westerink, M. A. J., Carey, L. A., Hutchins, W., Steplewski, Z., Weiner, D. B., and Kieber-Emmons, T., 1997, Peptide mimicry of carbohydrate epitopes on human immunodeficiency virus, Nature Biotechnol. 15:547-551.

54. Hutchins, W., Adkins, A., Kieber-Emmons, T., and Westerink, M. A. J., 1996, Molecular characterization of a monoclonal antibody produced in response to a group-C meningo-coccal polysaccharide peptide mimic, Mol. Immunol. 33:503-510.

55. Kieber-Emmons, T., Luo, P., Qiu,J., Agadjanyan, M., Carey, L., Hutchins, W., Westerink, M. A. J., and Steplewski, Z., 1997, Peptide mimicry of adenocarcinoma-associated carbohydrate antigens, Hybridoma 16:3-10.

56. Westerink, M. A. J., Giardina, P. C., Apicella, M. A., and Kieber-Emmons, T., 1995, Peptide mimicry of the meningococcal group C capsular polysaccharide, Proc. Natl. Acad. Sci. USA 92:4021-4025.

57. Westerink, M. A.J., Campagnari, A. A., Giardina, P., and Apicella, M. A., 1994, Antiidiotype antibodies as surrogates for polysaccharide vaccines, Ann. N. Y. Acad. Sci. 730:209-216.

58. Scott, J. K., Loganathan, D., Easley, R. B., Gong, X., and Goldstein, I. J., 1992, A family of concanavalin A-binding peptides from a hexapeptide epitope library, Proc. Natl. Acad. Sci. USA 89:5398-5402.

59. Oldenburg, K. R., Loganathan, D., Goldstein, I. J., Schultz, P. G., and Gallop, M. A., 1992, Peptide ligands for a sugar-binding protein isolated from a random peptide library, Proc. Natl. Acad. Sci. USA 895393-5397.

60. Hoess, R., Brinkmann, U., Handel, T., and Pastan, I., 1993, Identification of a peptide which binds to the carbohydrate-specific monoclonal antibody B3, Gene 12843-49.

61. Valadon, P., Nussbaum, G., Boyd, L. F., Margulies, D. H., and Scharff, M. D., 1996, Peptide libraries define the fine specificity of anti-polysaccharide antibodies to Cryptococcus neoformans, J. Mol. Biol. 261:11-22.

62. Shikhman, A. R., and Cunningham, M. W., 1994, Immunological mimicry between Nacetyl-beta-mglucosamine and cytokeratin peptides. Evidence for a microbially driven anti-keratin antibody response, J. Immunol. 152:4375-4387.

63. Shikhman, A. R., Greenspan, N. S., and Cunningham, M. W., 1994, Cytokeratin peptide SFGSGFGGGY mimics N-acetyl-beta-D-glucosamine in reaction with antibodies and lectins, and induces in vivo anticarbohydrate antibody response, J. Immunol. 153:5593-5606.

64. Shikhman, A. R., Greenspan, N. S., and Cunningham, M. W., 1993, A subset of mouse monoclonal antibodies cross-reactive with cytoskeletal proteins and group A streptococcal M proteins recognizes N-acetyl-beta-D-glucosamine, J. Immunol. 151:3902-3913.

65. Thurin-Blaszczyk, M., Murali, R., Westerink, M. A.J., Steplewski, Z., Co, M.-S., and Kieber-Emmons, T., 1996, Molecular recognition of the LewisY antigen by monoclonal antibodies, Protein Eng. 9:101-113.

66. Doe, B., Steimer, K. S., and Walker, C. M., 1994, Induction of HIV-1 envelope (gp120)-specific cytotoxic T lymphocyte responses in mice by recombinant CHO cellderived gp120 is enhanced by enzymatic removal of N-linked glycans, Eur. J. Immunol. 24:2369-2376.

67. Haurum,J. S., Arsequell, G., Lellouch, A. C., Wong, S. Y., Dwek, R. A., McMichael, A.J., and Elliott, T., 1994, Recognition of carbohydrate by major histocompatibility complex class I-restricted, glycopeptide-specific cytotoxic T lymphocytes, J. Exp. Med. 180:739-744.

68. Haurum, J. S., Tan., L., Arsequell, G., Frodsham, P., Lellouch, A. C., Moss, P. A., Dwek, R. A., McMichael, A. J., and Elliott, T., 1995, Peptide anchor residue glycosylation: Effect on class I major histocompatibility complex binding and cytotoxic T lymphocyte recognition, Eur. J. Immunol. 25:3270-3276.

69. Jensen, T., Galli, S. L., Mouritsen, S., Frische, K., Peters, S., Meldal, M., and Werdelin, O., 1996, T cell recognition of Tn-glycosylated peptide antigens, Eur. J. Immunol. 26:1342-1349.

70. Jensen, T., Hansen, P., Galli, S. L., Mouritsen, S., Frische, K., Meinjohanns, E., Meldal, M., and Werdelin, O., 1997, Carbohydrate and peptide specificity of MHC class 11-restricted T cell hybridomas raised against an O-glycosylated self peptide, J. Immunol. 158:3769-3778.

71. Michaelsson, E., Broddefalk, J., Engstrom, A., Kihlberg, J., and Holmdahl, R., 1996, Antigen processing and presentation of a naturally glycosylated protein elicits major histocom-patibility complex class 11-restricted, carbohydrate-specific T cells, Eur. J. Immunol. 26:19061910.

72. Rosenthal, K. L., and Gallichan, W. S., 1997, Challenges for vaccination against sexually-transmitted diseases: Induction and long-term maintenance of mucosal immune responses in the female genital tract, Semin. Immunol. 9:303-314.

73. Re, M. C., Furlini, G., Vignoli, M., Ricchi, E., Ramazzotti, E., Bianchi, S., Guerra, B.,

Costigliola, P., and La, P. M., 1992, Vertical transmission ofhuman immunodeficiency virus type 1. Prognostic value of IgA antibody to HIV-1 polypeptides during pregnancy, Diagn. Microbiol. Infect.Dis. 15:553-556.

74. Hocini, H., Belec, L., Iscaki, S., Garin, B., Pillot, J., Becquart, P., and Bomsel, M., 1997, High-level ability of secretory IgA to block HIV type 1 transcytosis: Contrasting secretory IgA and IgG responses to glycoprotein 160, AlDSRes. Hum. Retrovir. 13:1179-1185.

75. Bukawa, H., Sekigawa, R, Hamajima, R, Fukushima, J., Yamada, Y., Kiyono, H., and Okuda, K., 1995, Neutralization of HIV-1 by secretory IgA induced by oral immunization with a new macromolecular multicomponent peptide vaccine candidate, Nature Med. 1: 681-685.

76. Holmgren, J., Czerkinsky, C., Lycke, N., and Svennerholm, A. M., 1994, Strategies for the induction of immune responses at mucosal surfaces making use of cholera toxin B subunit as immunogen, carrier, and adjuvant, Am. J. Trop. Med. Hyg. 50:42-54.

77. Staats, H. F., Montgomery, S. P., and Palker, T. J., 1997, Intranasal immunization is superior to vaginal, gastric, or rectal immunization for the induction of systemic and mucosal anti-HIV antibody responses, AIDS Res. Hum. Retrovir. 13:945-952.

78. Wang, B., Dang, K., Agadjanyan, M. G., Srikantan, V., Li, F., Ugen, K. E., Boyer,J., Merva, M., Williams, W. V., and Weiner, D. B., 1997, Mucosal immunization with a DNA vaccine induces immune responses against HIV-1 at a mucosal site, Vaccine 15:821-825.

79. Okada, E., Sasaki, S., Ishii, N., Aoki, I., Yasuda, T., Nishioka, K., Fukushima, J., Miyazaki, J., Wahren, B., and Okuda, R, 1997, Intranasal immunization of a DNA vaccine with IL-12-and granulocyte-macrophage colony-stimulating factor (GM-CSF)-expressing plasmids in liposomes induces strong mucosal and cell-mediated immune responses against HIV-1 antigens, J. Immunol. 159:3638-3647.

This page intentionally left blank.

Good Carb Diet

Good Carb Diet

WHAT IT IS A three-phase plan that has been likened to the low-carbohydrate Atkins program because during the first two weeks, South Beach eliminates most carbs, including bread, pasta, potatoes, fruit and most dairy products. In PHASE 2, healthy carbs, including most fruits, whole grains and dairy products are gradually reintroduced, but processed carbs such as bagels, cookies, cornflakes, regular pasta and rice cakes remain on the list of foods to avoid or eat rarely.

Get My Free Ebook


Post a comment